Will Drought Lead to US Blackouts?

Will the US Face Blackouts as Electricity Generation Suffers in Drought?

Well, its official – the U.S. government has acknowledged that the U.S. is in the worst drought in over 50 years, since December 1956, when about 58 percent of the contiguous U.S. was in moderate to extreme drought.

According to the National Oceanic and Atmospheric Administration National Climatic Data Center’s “State of the Climate Drought July 2012” report, “Based on the Palmer Drought Index, severe to extreme drought affected about 38 percent of the contiguous United States as of the end of July 2012, an increase of about 5 percent from last month… About 57 percent of the contiguous U.S. fell in the moderate to extreme drought categories (based on the Palmer Drought Index) at the end of July… According to the weekly U.S. Drought Monitor, about 63 percent of the contiguous U.S. (about 53 percent of the U.S. including Alaska, Hawaii, and Puerto Rico) was classified as experiencing moderate to exceptional (D1-D4) drought at the end of July.”

Electricity Generation- Drought

Much business writing on the effects of the drought have focused on its agricultural aspects. To give but one, the hottest, driest summer since 1936 scorching the Midwest have diminished projected corn and soybean crop yields s in the U.S. for a third straight year to their lowest levels in nine years. Accordingly, the price of a bushel of corn has jumped 62 percent since 15 June and soybeans gained 32 percent in the same period.

But as consumers fret about the inevitable rise in food prices to come, the drought is unveiling another, darker threat to the American lifestyle, as it is now threatening U.S. electricity supplies.

Drought and Electricity Generation

Why?

Because virtually all power plants, whether they are nuclear, coal, or natural gas-fired, are completely dependent on water for cooling. Hydroelectric plants require continuous water flow to operate their turbines. Given the drought, many facilities are overheating and utilities are shutting them down or running their plants at lower capacity. Few Americans know (or up to this point have cared) that the country’s power plants account for about half of all the water used in the United States. For every gallon of residential water used in the average U.S. household, five times more is used to provide that home with electricity via hydropower turbines and fossil fuel power plants, roughly 40,000 gallons each month.

Michael Webber, associate director of the Center for International Energy and Environmental Policy at the University of Texas at Austin, is under no such illusions, stating that the summer’s record high  heat and drought have worked together to overtax the nation’s electrical grid, adding that families use more water to power their homes than they use from their tap. Webber said, “In summer you often get a double whammy. People want their air-conditioning and drought gets worse. You have more demand for electricity and less water available to produce it. That is what we are seeing in the Midwest right now, power plants on the edge.”

In July U.S. nuclear-power production hit its lowest seasonal levels in nine years as drought and heat forced Nuclear power plants from Ohio to Vermont to slow output. Nuclear Regulatory Commission spokesman David McIntyre explained, “Heat is the main issue, because if the river is getting warmer the water going into the plant is warmer and makes it harder to cool. If the water gets too warm, you have to dial back production,” McIntyre said. “That’s for reactor safety, and also to regulate the temperature of discharge water, which affects aquatic life.”

Nuclear is the thirstiest power source. According to the National Energy Technology Laboratory (NETL) in Morgantown, West Virginia, the average NPP that generates 12.2 million megawatt hours of electricity requires far more water to cool its turbines than other power plants. NPPs need 2725 liters of water per megawatt hour for cooling. Coal or natural gas plants need, on average, only 1890 and 719 liters respectively to produce the same amount of energy.

And oh, the National Weather Service Climate Prediction Center in its 16 August “U.S. Seasonal Drought Outlook” wrote, “The Drought Outlook valid through the end of November 2012 indicates drought conditions will remain essentially unchanged in large sections of the central Mississippi Valley, the central and southwestern Great Plains, most of the High Plains, the central Rockies, the Great Basin, and parts of the Far West…” The lack of rain and the incessant heat, has also increased the need for irrigation water for farming, meaning increasing competition between the agricultural and power generation sectors for the same shrinking water “pool.”

But, every cloud has a silver lining. California’s Pacific Gas and Electric Co. utility, commonly known as PG&E, that provides natural gas and electricity to most of the northern two-thirds of California, from Bakersfield almost to the Oregon border, is on the case. PG&E has informed its customers that its “Diablo Canyon (nuclear) Power Plant, the largest source of generation in the utility’s service area, is cooled by ocean water, not by rivers that could dry up.”

Never mind the fact that by the time the Diablo Canyon NPP was completed in 1973, engineers discovered that it was several miles away from the Hosgri seismic fault, which had a 7.1 magnitude earthquake on 4 November 1927.

But ocean water as a coolant is not necessarily the answer either.

On 12 August Dominion Resources’ Millstone NPP, situated on Connecticut’s Niantic Bay on Long Island Sound, was forced to shut down one of two reactor units because seawater used to cool down the plant was too warm, averaging 1.7 degrees above the NRC limit of 75 degrees Fahrenheit. The Millstone NPP, which provides half of all power used in Connecticut and 12 percent in New England, was only restarted twelve days later.

The federal government is hardly known for its scaremongering tactics, but it would seem that Mother Nature is forcing Americans to belatedly consider making some lifestyle changes, as the choice seems to be devolving into energy conservation, turning down the air conditioner and digging deeper into the wallet for food costs.

It might also be time for serious national discussion about renewable energy, including wind and solar.

If the sun stops shining, all bets are off.

See Also:

 

Source: http://oilprice.com/Energy/Energy-General/The-U.S.-Drought-and-Electricity-Generation.html

By. John C.K. Daly of Oilprice.com

Scroll to Top